ICANS-VI

INTERNATIONAL COLLABORATION ON ADVANCED NEUTRON SOURCES

June 27-July 2, 1982

THE IPNS-I CHOPPER SPECTROMETERS
D. L. Price, J. M. Carpenter, C. A. Pelizzari, S. K. Sinha, I. Bresof and G. E. Ostrowski

Argonne National Laboratory, Argonne, Illinois 60439 U.S.A.

ABSTRACT

We briefly describe the layout and operation of the two chopper experiments at IPNS-I. The recent measurement on solid ${ }^{4} \mathrm{He}$ by Hilleke et al. provides examples of time-of-flight data from the Low Resolution Chopper Spectrometer.

THE IPNS-I CHOPPER SPECTROMETERS

D. L. Price, J. M. Carpenter, C. A. Pelizzari

S. K. Sinha, I. Bresof and G. E. Ostrowski

Argonne National Laboratory, Argonne, Illinois 60439 U.S.A.

The chopper spectrometers at IPNS-I enable measurements of inelastic scattering with energy transfers in the range $40-800 \mathrm{meV}$. Detectors placed at many different angles determine the scattering as a function of wave vector Q as well as energy transfer E. As an example, Fig. 1 shows the region of (Q, E) space opened up by the use of 500 meV neutrons compared with the region accessible to 100 meV neutrons, which are towards the upper end of the range available at reactors. The aim of the chopper spectrometers at IPNS-I is to explore the new scientific opportunities in this new (Q, E) region.

Fig. 1 Region of (Q, E) space opened up by 500 meV neutrons compared with $100 \mathrm{meV}(\mathrm{E}=\hbar \omega)$.

Fig. 2 shows a schematic of the layout for the two spectrometers now existing at IPNS-I. By increasing the distances d_{1} and d_{3} the resolution is improved but at the expense of intensity. The two machines, Low-Resolution Medium-Energy Spectrometer (LRMECS) and High-Resolution Medium-Energy Chopper Spectrometer (HRMECS) represent different compromise positions with respect to this trade-off. The dimensions for the two machines are given in the figure.

IPNS-I CHOPPER SPECTROMETERS

$$
\begin{array}{lrllll}
& \frac{\mathrm{d}_{1}}{} & \frac{\mathrm{~d}_{2}}{} & \frac{\mathrm{~d}_{3}}{} & \frac{\Delta E / \mathrm{E}_{0}}{} & \varphi \\
\text { LRMECS } & 6.2 \mathrm{~m} & 0.6 \mathrm{~m} & 2.5 \mathrm{~m} & 6-8 \% & -10^{\circ} \text { to }+120^{\circ} \\
\text { HRMECS } & 12.8 \mathrm{~m} & 1.1 \mathrm{~m} & 4.0 \mathrm{~m} & 3-4 \% & -20^{\circ} \text { to }+20^{\circ}
\end{array}
$$

Fig. 2
Schematic of the layout and dimensions of the two chopper spectrometers at IPNS-I.

The chopper has a body of beryllium with aluminum end-caps; boron fiber/ aluminum composite defines the slits; details are given elsewhere ${ }^{1}$.

The system shown in Figure 3 maintains the choppers for these and other BLOCK DIAGRAM OF IPNS-I CHOPPER PHASING SYSTEM

Fig. 3
Summary of the scheme for chopper phasing at IPNS-I.
machines in a fixed phase relation to the accelerator ${ }^{2}$. A key element is the system master clock, based on a crystal oscillator and sending synchronized driving pulses to the Rapid Cycling Synchrotron (RCS) and the choppers. Each chopper circuit (in the dashed-line box in Fig. 3) generates a signal demanding extraction from the accelerator, based on the t_{0} signal from the target, the chopper period and a preset delay time. The priority level selector sends the highest priority (relative to a preassigned hierarchy) valid extraction signal to the RCS. The logic of the phasing mechanism is shown in detail in Fig. 4. The system performs excellently with the two choppers running simultaneously.
timing sequence of IPNS-I chopper phasing

1. For each chopper $i, t_{x}^{i} \equiv t_{2}^{i}+D^{i}$ is valid extraction command (EX) if
$t_{x}^{i}=t_{W} \pm \frac{1}{2} \Delta I_{W}$.
2. Master is nignest priority chopper giving valid $\mathrm{EX}_{\text {; }}$ master extraction command (MEX) triggers RCS extraction.
3. For master, if $t_{x}^{i} \neq \frac{1}{4} \Delta T_{w}$. change delay so that $t_{x}^{i}=t_{w}$.
4. If $t_{0}+t_{2}^{i}+\tau_{c}^{i}-T_{c}^{i} \pm \frac{1}{2} \Delta T_{c}$, blank off data acquisition systom for chopper i and. for slaves, change delays so that $t_{0}=t_{2}^{i}+T_{c}^{i}-T_{c}^{i}$.

6/82

Fig. 4. Timing sequence and logic of the chopper phasing system.

Approximately $100{ }^{3} \mathrm{He}$ proportional counters in each instrument detect scattered neutrons. The signals run to the IPNS-I Data Acquisition System ${ }^{3}$; the software enables signals from individual detectors to be binned singly or together as a larger group. The data are analyzed on the VAX 11-780 using general purpose programs which have been developed ${ }^{4}$. Fig. 5 gives a summary of the scheme involved.

Fig. 5
Summary of the scheme for chopper data analysis.

Since HRMECS has only just become operational, we now limit our discussion to LRMECS. Table I lists the experiments recommended by the Program Committee for the first year of full operation. At the present time all experiments recommended for the first half-year have been run and are in various stages of data analysis. In some cases additional data are needed.

As an example, we show raw time-of-flight data for the solid ${ }^{4} \mathrm{He}$ experiment ${ }^{5}$. The data were taken with $E_{0}=500 \mathrm{meV}$. The object was to determine the ground state momentum distribution in hcp solid ${ }^{4} \mathrm{He}$.

Figure 6 shows the scans through (Q, E) space corresponding to a fixed detector as a function of angle. Peaks are expected at the points where the curve for the recoil energy

$$
E_{R}=\frac{k^{2} Q^{2}}{2 M}
$$

crosses the (Q, E) scans ($M=$ mass of scattering atom).

Fig. 6
(Q, E) conditions for the ${ }^{4} \mathrm{He}$ experiment. The solid curves are the loci through (Q, E) space scanned by detectors at the angles indicated. The dashed curve is the recoil energy for ${ }^{4} \mathrm{He}$. The crosses indicate the peak positions in the measurement of Hilleke et al. (Ref. 5). $\mathrm{E}_{\mathrm{a}}=$ $505 \mathrm{meV}, \mathrm{k}_{0}=15.6 \AA^{-1}$.

The remaining figures show the count rate as a function of time for three angles. The circles represent the scattering with the container full and the lines the empty container scattering normalized by monitor counts to the full container run. Fig. 7 shows the helium peak at a small angle, $\phi=7.5^{\circ}$, where the recoil energy is very small and the helium peak is superimposed on the scattering from the container.

Fig. 7
Curve of scattering from ${ }^{4} \mathrm{He}$ (open circles) compared with that from the empty container (normalized to the sample run) at room temperature, $\phi=7.5^{\circ}$ (Hilleke et al., Ref. 5).

As the angle is increased the helium peak begins to move away from the container scattering ($\phi \sim 57^{\circ}$, Fig. 8), and at larger angles it becomes well resolved ($\phi \sim 87^{\circ}$, Fig. 9). The data for the signal run were accumulated in 40 hours with a current of $8 \mu \mathrm{~A}$ of 400 MeV protons. At the present time analysis is underway to provide the scattering function $S(Q, E)$ to compare with theoretical calculations.

References

1. R. Kleb, C. A. Pelizzari and J. M. Carpenter "Fermi Choppers for Epithermal Neutron Beams", to be published.
2. W. Praeg, D. McGhee and G. Volk "Phase Lock of Rapidly Cycling Synchrotron and Neutron Choppers", IEEE Trans. Nucl. Sci. NS-28, 2171 (1981).
3. R. K. Crawford, R. T. Daly, J. R. Haumann, R. L. Hitterman, C. B. Morgan, G. E. Ostrowski and T. G. Worlton "The Data Acquisition System for the Nuclear Scattering Instruments at IPNS-I", IEEE Trans. Nucl. Sci. NS-28, 3692 (1981).
4. D. L. Price, "IPNS-I Chopper Data Analysis Programs", June 1, 1982 (unpublished).
5. R. O. Hilleke, P. Chaddah, R. O. Simmons, D. L. Price and S. K. Sinha (to be published).

TABLE 1. LIST OF EXPERIMENTS RECOMMENDED BY THE PROGRAM COMMITTEE FOR THE FIRST YEAR OF LRMECS

LOW-RESOLUTION MEDIUM-ENERGY CHOPPER SPECTROMETER
Accepted Proposals November 1981 - April 1982

6	S. A. Werner G. Shirane	U. of Missouri Brookhaven	High Energy Magnetic Excitations in Pure Chromium	7 days
71	R. O. Hilleke	U. of Illinois	Momentum Density of HCP ${ }^{4} \mathrm{He}$	10 days
	R. O. Simmons	U. of Illinois		
	P. Chaddah	Bhabha At. En. Res. Cntr.		
	S. K. Sinha	Argonne		
43	J. M. Carpenter	Argonne	Mapping the Scattering Law for Vitreous SiO_{2}	7 days
	C. A. Pelizzari	Argonne		
	D. F. R. Mildner	U. of Missouri		
57	S. M. Shapiro	Brookhaven Argonne	Measurement of Spin Dynamics in the Mixed Valence Alloy $\mathrm{Ce}_{1-\mathrm{x}}{ }^{\text {Th }} \mathrm{x}$	$\begin{aligned} & 7 \text { days } \\ & \text { (with \#65) } \end{aligned}$
	S. K. Sinha			
58	J. S. Lannin	Penn State U.	Time of Flight Study of the Phonon Density of Amorphous Phosphorus	7 days (Backup)
	L. Pilione	Penn State U.		
	R. Magaña	'Penn State U.		
	S. K. Sinha	Argonne		
65	R. D. Parks	Polytechnic Inst. of New York	Quasielastic Neutron Scattering Study of $\mathrm{Ce}_{0.9-x^{\mathrm{La}} \mathrm{x}^{\mathrm{Th}}}^{0.1}$	$\begin{aligned} & 7 \text { days } \\ & \text { (with \#57) } \end{aligned}$
	S. Shapiro	Brookhaven		
	B. Grier	Brookhaven		
	S. K. Sinha	Argonne		

Accepted Proposals May - October 1982

9 S-H. Chen
D. L. Price

66 S. K. Sinha
H. A. Mook
B. Goodman

72 S. K. Sinha
A. J. Arko
D. L. Price
R. M. Nicklow

104 J. R. D. Copley
W. S. Howells
M. Loewenhaupt Jülich

MIT
Argonne
Argonne
Oak Ridge
U. of Cincinnati

Argonne
Argonne
Argonne Oak Ridge

McMaster Univ. Rutherford Lab.

Karlsruhe

Proton Dynamics in Supercooled 2nd Backup Water

Measurement of the Condensate 10 days Fraction of 4 He in Superfluid 4 He and ${ }^{3} \mathrm{He}-{ }^{4} \mathrm{He}$ Solutions

Dyriamical Response in the $\quad 10 \times 1 / 2$ days Exchange Enhanced Paramagnet $\cup \mathrm{Al}_{2}$

Atomic Motion in Liquid Lithium 10 days and Selected Lithium Alloys

Magnetic Excitations in Cerium. | $10 \times 1 / 2$ |
| :--- |
| and Uranium Compounds |

with $\# 72$ Spin Waves in Ordered $\mathrm{Ni}_{3} \mathrm{Mn} \quad$ 1st Backup

